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Segmentation and Measurement of the Cortex from
3-D MR Images Using Coupled-Surfaces Propagation

Xiaolan Zeng,* Lawrence H. Staib, Robert T. Schultz, and James S. Duncan

Abstract—The cortex is the outermost thin layer of gray matter
in the brain; geometric measurement of the cortex helps in
understanding brain anatomy and function. In the quantitative
analysis of the cortex from MR images, extracting the structure
and obtaining a representation for various measurements are key
steps. While manual segmentation is tedious and labor intensive,
automatic reliable efficient segmentation and measurement of the
cortex remain challenging problems, due to its convoluted nature.
Here we present a new approach of coupled-surfaces propagation,
using level set methods to address such problems. Our method
is motivated by the nearly constant thickness of the cortical
mantle and takes this tight coupling as an important constraint.
By evolving two embedded surfaces simultaneously, each driven
by its own image-derived information while maintaining the
coupling, a final representation of the cortical bounding surfaces
and an automatic segmentation of the cortex are achieved. Char-
acteristics of the cortex, such as cortical surface area, surface
curvature, and cortical thickness, are then evaluated. The level
set implementation of surface propagation offers the advantage
of easy initialization, computational efficiency, and the ability to
capture deep sulcal folds. Results and validation from various
experiments on both simulated and real three-dimensional (3-D)
MR images are provided.

Index Terms—Coupled-surfaces propagation, level set, 3-D
segmentation, volumetric layer.

I. INTRODUCTION

A SIGNIFICANT amount of recent anatomical MRI studies
on the human brain have focused on the cerebral cortex.

As the outermost layer of gray matter in the brain, the
cerebral cortex is composed of columns of neurons aligned
perpendicularly to the cortical surface that serve as basic
units of information processing. Cortical surface area is likely
to be proportional to column number and therefore surface
area should be related to functional capacities. In addition,
regional cortical thickness and gray-matter volume may relate
to functional capacities and alteration in each of these features
has been suspected in specific neuropsychiatric disorders [32].
In the quantitative analysis of these features of the cortex,
segmentation is the first step.
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The cerebral cortex is characterized by its convoluted sur-
face. Due to this convoluted nature, the segmentation of the
cortex must be considered in three dimensions. For example,
although the cerebral cortical layer is nearly 3 mm thick
[1] everywhere on the cortex, an oblique two-dimensional
(2-D) slice that happens to be approximately parallel to a
particular sulcus will give the appearance of a much thicker
structure. Only by going through the neighboring slices can
we get complete information to perform segmentation. Slice-
by-slice manual tracing of the cortex is extremely tedious
and labor intensive, hence, automatic, reliable, and relatively
efficient segmentation which enables automated measurement
is a highly desirable goal.

A. Related Work

There are a variety of alternatives to our approach. The first
group are region-based methods which exploit homogeneity
in images. They primarily depend on the underlying consis-
tency of any relevant feature in different regions. Following
the work of Geman and Geman [10], Markov random field
(MRF)-based methods have been widely used for this purpose,
which employ energy-minimizing techniques to reconstruct
a piecewise flat image from the noisy data. A multispectral
voxel classification method [2] was used in conjunction with
connectivity to segment the brain into different tissue types
from three-dimensional (3-D) MR images. A material mixture
model [19] was also used for the segmentation problem.
Region-based methods typically require further processing to
group segmented regions into coherent structures. Moreover,
quantitative measurement of features other than volume does
not follow immediately.

The most common second alternative strategy is boundary
finding, of which active contour methods are of special note.
They rely mainly on gradient features for segmentation of
structures from an image. One of the most generic and popular
methods of detecting boundaries is the snakes approach due
to Kasset al. [13]. One concern regarding this method is that
close initialization must be provided in order to achieve good
final results. A balloon model with a pressure force outward
was then introduced as a way to generalize and solve some
of the problems encountered with the above snake method.
Deformable surface models using the finite-element method
have been used to segment 3-D images [3]. However, the
need to override local smoothness to allow for significant
protrusions that a shape may possess (which is highly desirable
in order to capture the sulcal folds) remains a problem.
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An alternative approach to deformable boundary finding was
to use a 3-D surface model with Fourier presentation due to
Staib and Duncan [35], [36]. The advantage of this model is
that it allows a wide variety of smooth surfaces to be described
with a small set of parameters. However, it has limitations in
capturing convoluted surfaces, such as the cortical surface.

All of the above methods do not explicitly use constraints
due to cortical structural information, hence, they are limited
for the purpose of cortical segmentation. However, there has
been some effort made in this direction. MacDonaldet al.
presented an iterative algorithm for simultaneous deformation
of multiple surfaces with intersurface proximity constraints
and self-intersection avoidance, where the deformation was
formulated as a cost function minimization problem [21], [22].
This method was applied to 3-D MR brain data to extract
surface models for the skull and the cortical surfaces. This ap-
proach takes advantage of the information of the interrelation
between the surfaces of interest. However, drawbacks lie in
its extremely high computational expense and the difficulty of
tuning the weighting factors in the cost function, due to the
complexity of the problem.

Teo et al. [38] used a system that exploited knowledge of
cortical anatomy, in which white matter and CSF regions were
first segmented. After the connectivity of the white matter was
verified in regions of interest, a representation of the gray
matter was created by a constrained growing out from the
white-matter boundary. The focus of this work was to create
a representation of cortical gray matter for functional MRI
visualization.

Davatzikoset al. introduced the concept of a ribbon for
modeling the outer cortex in cross-sectional brain images [4]
and then extended the model into 3-D [5]. A deformable sur-
face algorithm was constructed to find the central layer of the
cortex. Based on this parameterization, the cortical structure
was characterized through its depth map and curvature map.
This method explicitly used the structural information of the
cortex. However, close initialization and significant human
interaction are needed to force the ribbon into sulcal folds.
To compensate for this, Xuet al. further extended the method
by using a new external force model, called gradient vector
flow, for surface deformation [41].

Daleet al. [6] concentrated on cortical surface-based analy-
sis. They started by deforming a tessellated ellipsoidal template
into the shape of the inner surface of the skull under the
influence of an MRI-based force and a curvature reducing
force. White matter was then labeled and the cortical surfaces
were reconstructed with validation of topology and geometry.

II. OUR APPROACH

The cortical layer to be recovered has an nearly constant
thickness (there is variation across different regions) and is
bounded by two surfaces: the CSF/gray-matter boundary and
gray-/white-matter boundary. Across each bounding surface
there is a local difference in the gray-level values, while in
between the two surfaces there is a homogeneity of certain
voxel statistics. For our purposes, the cortical layer is defined
completely by its bounding surfaces and the homogeneity

Fig. 1. A local operator to derive image information.

in between. Following our earlier work [42], we propose a
new approach of coupled-surfaces propagation via level set
methods for the segmentation and measurement of the cortex.
By evolving two embedded surfaces simultaneously, each
driven by its own image-based information while maintain-
ing the coupling, we are able to achieve an automatic and
robust segmentation of the cortex and simultaneously obtain
a representation of the inner and outer cortical surfaces from
which surface area can be calculated. Furthermore, curvature
and thickness maps are easily obtained from this coupled level
set formulation.

A. Image Information Derivation

Medical images consist of a number of different anatomical
regions. The homogeneity of each region can usually be
characterized by various voxel statistics inside. Thus, by using
gradient features (information of gray level difference between
neighboring voxels) alone, we actually lose important pieces
of information. Here in our approach, instead of using gradient
features, we design a local operator which makes use of the
gray level information, and gives a measure of the likelihood
of a voxel lying on the boundary between tissueand tissue

. This model can also be extended to make use of a vector
of registered parametric images (such as T1, T2, and PD MR
images) or images from different modalities.

At each voxel site , a small neighborhood aroundis drawn
(see Fig. 1). Now, given a possible boundary with normal
direction , dividing the neighborhood into parts and ,
the probability that lies on the boundary between tissue
and tissue is

Tissue Tissue (1)

Given an estimation of , we can use as a measure
of the likelihood that lies on the boundary between tissue

and tissue .
One way of estimating is to first generate the vector

where is the number
of possible directions corresponding to the 26 first-order
neighbors. Then, is the direction which corresponds to the
element in vector that has the largest magnitude. Here we
make the assumption of one single parametric image, in
which voxels belonging to tissue are independently drawn
from a Gaussian distribution and voxels belonging
to tissue are independently drawn from Thus,
we have

(2)
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(a) (b)

(c) (d)

Fig. 2. Results from our local operator compared to image gradient. (a) An
axial slice from original 3-D brain images. (b) Result from gradient operator.
(c) Result from our local operatorpBC(~��); B = gray matter,C = white
matter. (d)pAB(~��); A = CSF,B = gray matter.

In our implementation, and are now set to include
one voxel each. A limited expansion to several voxels could
potentially further enhance the capability of capturing homo-
geneity. In Fig. 2, we show an example of the results from
our local operator, showing how well it selects the appro-
priate gray-level transition which is crucial for subsequent
processing. The local operator was applied to images after we
reduced the effects of MR inhomogeneity by correcting, using
a simple fixed map. The map was determined manually by
sampling tissue types throughout the field to decide the average
inhomogeneity. Note that more complicated MR image models
[10], [17], [18] can be used to calculate .

B. Level Set Method

Level set methods are powerful numerical techniques for
analyzing and computing interface motion, and have been used
in image segmentation in recent years [23]–[25], [33], [34].
The essential idea of the level set methods is to represent the
propagating surface (in our case) of interest as a frontand
embed this front as the zero level set of a higher dimensional
function defined by where is the signed
distance from position to . A Eulerian formulation is
produced for the motion of this surface, propagating along its
normal direction with speed where can be a function
of the surface characteristics (such as the curvature, normal
direction, etc.) and the image characteristics (e.g., gray level
and gradient, etc.). The equation of the evolution of, inside
which the propagating surface is embedded as the zero level
set, is then given by

(3)

The major advantages of using this method over other
active contour strategies include the following. First, although

Fig. 3. Single-surface versus coupled-surfaces approach on cortex segmen-
tation. Top: surfaces resulting from single-surface approach shown on a
sagittal slice of original image (finding the inner and outer cortical surfaces
separately); bottom: surfaces resulting from the coupled-surfaces approach
shown on a sagittal slice of the expert tracing result. Notice that the outer
cortical surface resulted from the coupled 3-D algorithm nicely fits the
boundary from expert tracing.

the evolving level function remains a function, the
embedded propagating front may change topology, break,
merge, and form sharp corners as evolves. Second, the
intrinsic geometric properties of the front may be easily
determined from . For example, at any point of the front,
the normal vector is given by .

C. Single-Surface Approach Versus Coupled-Surfaces Ap-
proach

Because of the limitations of the imaging technique used
and the volume averaging effect, it is often observed that in
some regions there is not enough information from the image
data to clearly define either the outer or the inner bounding
surface. When applying a single-surface approach, we may
very well end up with error in such a region. While using
the coupled-surfaces approach, information on the partner
surface is available through the coupling and improves the
performance of the surface finding.

In the case of MR brain images, due to volume averaging,
in some regions, the boundary between white matter and gray
matter is not well shown, while the CSF appears clearly. The
single-surface approach may hence have the inner cortical
surface collapse into CSF. However, with the coupled-surfaces
approach, we maintain some minimal distance between the
inner cortical surface and CSF, thus preventing the inner
cortical surface from going into CSF. There are also places
where structures such as eye sockets appear, so that the CSF
cannot be observed in the image. With the coupled-surfaces
approach, the white-/gray-matter boundary information is then
used to stop the propagation of the outer cortical surface before
it penetrates nonbrain structures. Fig. 3 shows examples of the
above-mentioned cases where the coupled-surfaces approach
outperforms the single-surface approach.
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Fig. 4. Functionsg andh used in speed term design.

D. Coupled-Surfaces Propagation: Speed Term Design

In solving the problem of segmenting the cortex, we con-
sider two moving interfaces describing the inner and outer
cortical bounding surfaces, respectively. Starting from inside
the inner cortical surface (i.e., inside the white matter) with an
offset in between (see Fig. 7), the interfaces propagate along
the outward normal direction, stopping at the desired place,
while maintaining a certain distance between them.

Embedding each surface as the zero-level set in its own
level function, we have two equations

(4)

(5)

where and are functions of the surface normal
direction, image-derived information, and distance between
the two surfaces. The coupling is embedded in the design
of and . At places where the distance between the
two surfaces is within a normal range, the two surfaces
propagate according to the image-based information. Where
the distance between the two surfaces is out of the normal
range, the distance imposes a constraint on the propagation of
the surfaces.

With the level set implementation we have a natural way
to establish a correspondence between the points on the two
evolving surfaces through distance, which is evaluated with
little extra computational expense. Recall that the value of the
level function of a front at any point is simply the distance
from this point to the current front which, as in [33], is
calculated as the shortest distance from this point to all the
points on the front. In our case of two moving surfaces, for
any point on the inner moving surface, the distance to the outer
moving surface is the value at this point and vice versa
for the point on the outer moving surface. Hence, we write

(6)

(7)

where and are the functions, as shown in Fig. 4, and
denote CSF, gray matter, and white matter respec-

tively.
Function maps larger likelihood to slower speed, i.e.,

as the likelihood gets larger, tends to zero, while as the
likelihood gets to near zero, tends to a constant. Function

penalizes the distance off the normal range. As the distance
goes out of normal range, goes to zero. Thus, each surface
moves with constant speed along its normal direction and
slows down when either the image-based information becomes

strong or the distance to the other surface moves away from
the normal range. Each surface finally stops when the image-
derived information is strong enough or the distance to the
other surface is out of the normal range.

Based on the fact that the speed terms are designed to force
the propagating level set to stop at the desired boundary, the
image-dependent speed terms have meaning only on the front,
i.e., the zero level set. However, the level set equation of
motion is written for the function , defined over the entire
image grid. We thus extend the speed terms from the zero
level set to the whole image grid, as in [33], i.e., pointtakes
on the speed of point, which is the closest point to and
lies on the zero level set.

Due to the level set formulation, we have a notion of
the inside and outside of the current moving front, which is
embedded in the outward normal direction. This information
can be used to reduce the feasible space of possibles, or
can be used directly as an estimate of, thus obtaining a
better result.

E. Narrow-Band Method and Distance Correspondence

For computational efficiency, the algorithm is implemented
using a narrow-band method [33], which modifies the level
set method so that it only explicitly updates the points close
to the current propagating fronts. Our implementation of the
narrow-band method uses this idea, but is designed specifically
for coupled level sets so that the distance between the two
embedded surfaces (necessary for the computation of the speed
terms) is available with no further computation after narrow-
band rebuilding.

Based on the fact that any pointin the narrow band of
the current surface should be within some neighborhood of
a certain point on the current surface, the narrow band
is constructed dynamically in the 3-D neighborhood of each
point on the current surface by including points that lie within
a certain distance range (i.e., bandwidth) away from that
particular point. Also, since a point in the narrow band can
be within the neighborhood of several points on the
current surface, we update the value of the level function
at to be

where function gives the positive Euclidean distance.
The steps for rebuilding the narrow band and updating

inside the band are as follows:

for every point on the current front
for every point in the neighborhood of

if is not already in the narrow band,
then add to the narrow band;

if is less than
the absolute value of the current

then update to be

The size of the neighborhood depends on the allowed band-
width and therefore is fixed. Thus, for a surface represented
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Fig. 5. Schematic of narrow-band implementation for 2-D curve case (same
argument holds in 3-D). Top: dynamic construction of the narrow band and the
update of the level function	 within are performed in the neighborhood of
the current surface. Bottom: inner and outer surfaces with their narrow bands.
Notice the inner surface lies within the narrow band of the outer surface, and
vice versa.

Fig. 6. Algorithm diagram.

using points, the construction of its narrow band and
the update of in the narrow band is an calcula-
tion.

In our application, two different narrow bands are computed
for the inner and outer interfaces, respectively. As shown
in Fig. 5, to ensure that the distance-based correspondence
between the coupled surfaces falls out automatically, the
two bandwidth ranges (for the inner and outer narrow bands
separately) are chosen such that the inner surface lies within
the narrow band of the outer surface and vice versa. Thus, at
each time step, the current position of the propagating coupled
surfaces and the surrounding narrow bands are estimated and
the whole process repeats until the speed terms for both the
inner and outer surfaces reach a zero value everywhere. To
summarize, the algorithm diagram is shown in Fig. 6.

Fig. 7. Propagation of the outer (pink) and inner (yellow) bounding surfaces.
Top: pairs of concentric spheres (only the outer ones are shown on the left,
both are shown with a cutting plane on the right) as initialization in unedited
3-D MR brain images; middle: intermediate step in surface propagation;
bottom: final result of the outer and inner cortical surfaces.

F. Measurement

With the coupled-surfaces propagation via level set meth-
ods, it is easy to perform various measurements on the cortical
layer with little extra computational expense. Whole brain
volume, cortical gray-matter volume, white-matter volume,
cortical surface area, cortical surface shape, and cortical thick-
ness maps are among the features most interesting in the
study of brain structure and function. Different combinations
of the above measurements may help in determining the
pathobiology of various neuropsychiatric disorders. We now
discuss one by one the above measurements from our coupled-
surfaces formulation.

Volume: With the signed distance function, the level set
formulation keeps track of the inside and outside of the current
moving front. Once the evolution of the coupled surfaces is
completed, the cortical gray-matter voxels are those that lie
inside the outer cortical surface while outside the inner cortical
surface. In the same fashion, nonbrain tissue voxels will be the
ones that are outside the outer cortical surface and voxels of
white matter will lie inside the inner cortical surface, except
for subcortical gray matter and ventricles.

Because the signed-distance-based measures have a sub-
voxel accuracy, we can obtain a subvoxel segmentation instead
of a binary segmentation on the data set. In other words, if the
distance from a voxel to the zero level set surface is less than
the voxel size in width, the voxel is considered to contain
multiple tissue types.
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Surface Area:A marching cubes algorithm [20] is per-
formed on the signed distance functions, and to
extract the embedded zero level sets. The resulting surfaces
are realized using a triangular representation. Surface area is
then calculated as the sum of the areas of the triangles.

Surface Curvature and Shape Index:As discussed above,
one advantage of the level set implementation is that geometric
properties of the propagation front are easily calculated [33]. In
our case of surfaces propagating in 3-D space, there are many
choices for the curvature of the front (for formal definitions of
the curvatures, refer to [7]), including mean curvature and
Gaussian curvature . Both may be conveniently expressed
[33] in terms of the level set function

(8)

(9)

where is the set of circular
shifts of

The maximum principle curvature and the minimum
principle curvature are related to Gaussian and mean
curvatures through the following formulas:

We also adopt the classification of surfaces by Koen-
derink [15], using the numerical relationship between the two
principal curvatures. A shape index function is defined as

arctan , which classifies
the surfaces into nine types, as show in Fig. 11. With the
shape index, gyri (mostly ridges) and sulci (mostly ruts) are
automatically identified. Further potential use of the shape
index includes the definition of an atrophy index (sulci widen
with age).

Thickness Map:As discussed above, the value of the level
function of a front at any point is the distance from this point to
the current front. Also recall that the inner and outer surfaces
are the zero level sets of and . Thus, for any point
on the outer surface, the absolute value of at the point is
simply the distance from the point to the inner surface. Using
this measure, we obtain a thickness map between the inner and
outer cortical surfaces which can be used to study the normal
thickness variations across different regions of the brain and
also the abnormalities in brain structures.

III. EXPERIMENTAL RESULTS

In this section, we show validations of our approach on
various simulated and real MR data, as well as applications
to specific cortical studies. We use only T1-weighted images
because they provide the best gray/white contrast [31] and are
therefore commonly used for neuroanatomical analysis.

A. Validation on Simulated MR Data with Ground Truth

We first present our segmentation results using the simulated
MR brain images provided by the McConnell Brain Imaging
Center at the Montreal Neurological Institute [12]. The images
are generated using an MRI simulator [16] which allows users
to independently control various acquisition parameters to
obtain realistic MR images. The ground truth of the phantom is
provided in the form of membership functions of each voxel
belonging to different tissue types, such as the skull, CSF,
gray matter, and white matter.

The simulated data we tested our algorithm on were T1
images of a normal brain, with the following parameter
settings: voxel size 1 mm , noise 3%, and intensity
nonuniformity 0%. Starting from the unedited images, no
further user interaction is needed after specifying several pairs
of concentric spheres as initialization. The spheres grow out
and automatically lock onto the inner and outer cortical sur-
faces. As long as the spheres are placed inside the white matter,
the algorithm is robust to the starting position. Measurement of
the volume is then done as described in the previous section.
We use a binary segmentation in this experiment. In our
implementation of cortex segmentation, the allowed distance
between the inner and outer surfaces is set to range from 1.5
to 5.5 mm, based on knowledge from reported postmortem
studies [1]. Therefore, to ensure the proper overlapping of the
inner and outer narrow bands, the bandwidth ranges for the
inner and outer interfaces are chosen to be (3 mm, 6 mm)
and ( 6 mm, 3 mm), respectively.

To evaluate the segmentation result, we apply several mea-
sures defined as follows. For any tissue typein the region
of interest, we denote the voxels of tissue typerecovered
from our 3-D algorithm as and the voxels that are mostly
of tissue type according to the phantom (i.e., the value of
tissue membership function is greater than 0.5) as. We
denote the overlap of and as and the part that is
in but not in as . A true positive (TP) rate is then
defined to be the size of relative to the size of , while
the false positive (FP) rate is defined to be the ratio of the size
of to the size of . We also define the volume ratio to be
the volume of all the voxels segmented as of tissue typeby
our algorithm to the total subvoxel volume of tissue type,
specified by the phantom (subvoxels contribute in only part
of the voxel volume).

Table I shows our measurement results over 3 types: total
brain tissue (including white matter and gray matter); cortical
gray matter in selected slices; and white matter. Since the
algorithm is designed specifically for the nearly constant
thickness of the cerebral cortex, it recovers only part of
the gray matter in the brain stem and the cerebellum where
the constant thickness constraint is not well satisfied. These
regions account for most of the errors in the TP rate and
volume ratio for whole brain tissue. For the same reason
that the algorithm is specifically tailored for the cerebral
cortex, we would compare the cortical gray-matter volume
only in the cerebrum. Since the phantom data does not
provide the information related to partitioning the cerebrum,
the cerebellum, and the brain stem, we only compare the
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TABLE I
COMPARISON OF OURVOLUME MEASUREMENTS WITH THEPHANTOM

GROUND TRUTH. WHOLE BRAIN: TOTAL BRAIN TISSUE (WHITE+GRAY

MATTER); CORTICAL GRAY MATTER �: CORTICAL GRAY MATTER ON

THE FRONTAL 49 CORONAL SLICES AND THE TOP 56 AXIAL SLICES

cortical gray-matter volume on selected slices where the
cerebellum and brain stem are excluded: frontal, 49 coronal
slices and top, 56 axial slices. The resulting average error of
the TP and FP rate is around 6–7%, and the volume ratio error
is within 4%. For the white matter, the errors for the TP, FP
rate, and volume ratio are also low. These results show that our
algorithm performs well in isolating the brain from nonbrain
tissues and in segmenting the cortex.

B. Validation on 20 Normal Brains

To further evaluate our segmentation approach under a
wide range of imaging conditions, we tested the algorithm
on real MR data and compared the results obtained with gray
segmentation by manual experts. Since for 3-D data it is a
very labor intensive job to segment gray and white matter, we
utilized the data provided by the Internet Brain Segmentation
Repository (IBSR) of the Center for Morphometric Analysis
(CMA) at Massachusetts General Hospital [11].

The purpose of IBSR is to encourage the development
and evaluation of segmentation methods by providing test
image data, human expert segmentation results, and methods
for comparing segmentation results. It is one of the first
efforts to offer solutions to the problem of validating and
comparing new algorithms in this rapidly growing medical
image analysis field. The test image data sets provided in this
repository permit a standardized mechanism for evaluation of
the sensitivity of a given analysis method to signal to noise
ratio, contrast to noise ratio, shape complexity, degree of
partial volume effect, etc.

We obtained 20 normal MR brain data sets and their manual
segmentations from IBSR. These 20 coronal 3-D T1-weighted
spoiled gradient echo MRI scans were performed on two
different imaging systems. Ten FLASH scans on four males
and six females were performed on a 1.5-T Siemens Magnetom
MR System (Iselin, NJ) with the following parameters: TR
40 ms, TE 8 ms, flip angle 50 , field of view 30 cm,
slice thickness contiguous 3.1 mm, matrix 256 256,
and averages 1. Ten 3-D-CAPRY scans on six males and
four females were performed on a 1.5-T General Electric Signa
MR System (Milwaukee, WI), with the following parameters:
TR 50 ms, TE 9 ms, flip angle 50 , field of view
24 cm, slice thickness contiguous 3.0 mm, matrix 256

256, and averages 1.
All data sets were positionally normalized at CMA by

imposing a standard 3-D brain coordinate system on each 3-
D MR scan, using the midpoints of the decussations of the

Fig. 8. Average overlap metric for gray-matter segmentation on 20 normal
brains from various segmentation methods. The results of automatic segmen-
tation methods provided by IBSR were from work done by Rajapakse. MAP:
maximuma posterioriprobability. ML: maximum likelihood.�: using frontal
13 coronal slices and upper 50 axial slices of each brain to exclude brain
stem and cerebellum.

Fig. 9. Three-dimensional volume rendering of the frontal lobe cortex with
an oblique cutting plane. The convoluted thin bright ribbon is the cortical
gray matter captured on the cutting plane.

anterior and posterior commissures and the midsagittal plane
at the level of the posterior commissure as points of reference
for rotation and (nondeformation) transformation [37], [8]. The
repositioned scans were then resliced into normalized 3.0-mm
coronal, 1.0-mm axial, and 1.0-mm sagittal scans which were
used for subsequent analysis.

Manual segmentation was performed on the normalized
scans by trained investigators at CMA using a semiautomated
intensity contour mapping algorithm [14], [11]. Once the exter-
nal border was determined by intensity contour mapping, grey-
white-matter borders were demarcated, using signal intensity
histograms. Using this technique, borders were defined as the
midpoint between the peaks of the bimodal histogram for a
given structure and its adjacent tissue. Other neuroanatomical
structures were segmented similarly [9].

An overlap metric is used by IBSR to compare results
from automatic segmentation and manual segmentation. While
manual segmentations are not ground truth, they provide a rea-
sonable way to compare automated segmentation methods. The
overlap metric is defined for a given voxel class assignment
as the number of voxels that have the class assignment in both
segmentations, divided by the number of voxels where either
segmentation has the class assignment, which is equivalent
to . This metric ranges from 1.0 for perfect
agreement, to 0.0 for no agreement of classified voxels.

We interpolated the image data into 1-mm-thick coronal
slices and then ran our coupled-surfaces algorithm. Fig. 8
shows the overlap metric for gray-matter segmentation on 20
normal brains from the manual method, various automatic
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(a) (b) (c)

Fig. 10. Coronal slices form 3-D images. (a) Original image. (b) Cortical gray matter from manual tracing. (c) Cortical gray matter from our 3-D algorithm.

segmentation methods and our coupled-surfaces algorithm.
The results from the automatic segmentation provided by
IBSR were from work done by Rajapakse and partially based
on the methods described in [26]. The gray-matter overlap
metric for our algorithm on the whole brain is 0.657, which is
well above those from the other six listed automatic methods
ranging from 0.473 to 0.564 (shown in columns one to six
in Fig. 8). Since our algorithm is designed specifically for the
cerebral cortex, we compute an improved overlap metric on
the upper and frontal part of the brain (to exclude brain stem
and cerebellum) of 0.701. Moreover, considering that the other
six listed automatic methods started with brain-only data sets,
while the coupled-surfaces algorithm started with unstripped
brain images, the advantage of our method with geometric
structural constraints is clear.

These 20 brain scans were chosen by IBSR because they
have been used in published studies [26] and cover a range of
image quality [11], with the worst ones having low contrast
and relatively large intensity inhomogeneities. The overlap
scores shown in Fig. 8 from the automatic classification meth-
ods may appear low, however, they need to be taken into
the context of a wide range of image quality, and should
not be compared with numbers from different studies. More
recently acquired (i.e., better quality) data should result in
far better results from the automatic classification methods,
which holds for our coupled-surfaces algorithm as well. In
fact, as shown in the section above, the overlap metric for our
phantom cortical segmentation is ,
which compares well with the manual overlap metric of
0.876 showing interoperator reproducibility from tests on four
brains averaged over two experts (see Fig. 8). With the rapid
growth of medical image processing, it is virtually impossible
to implement all the novel methods published and compare
results. However we take this study as our initial step toward
more extensive evaluation of our algorithm with the help of
IBSR, and we intend to carry out more studies.

C. Results on Real MR Data for Frontal Lobe Study

We then tested our algorithm on frontal lobes of seven
high-resolution MRI data sets (SPGR, 2NEX, 1.21.2
1.2 mm voxels) from a randomly chosen subset of young
adult autistic and control subjects from our ongoing studies
to measure frontal lobe volume. After preprocessing to reduce
the effects of MR bias field inhomogeneity using a simple
standard nonlinear map (this is also a step before expert
manual tracing), we ran the coupled-surfaces algorithm to
isolate the brain tissue and segment the cortex (see Fig. 7). The
frontal lobe was then manually defined independently in the
left and right hemispheres as all tissue anterior to the central

TABLE II
OUR MEASUREMENTS COMPARED WITH EXPERT

TRACING RESULTS ON SEVEN FRONTAL LOBES

sulcus, excluding subcortical nuclei [28]. We then create a
mask of the frontal lobe and use it to exclude the posterior
part of the volume.

Fig. 9 shows a 3-D volume rendering of the cortical gray
matter of a frontal lobe, resulting from our algorithm. In
Fig. 10, 2-D coronal slices of the same result are shown. As
shown in Table II, over the seven frontal lobes, the TP and
FP rate (compared to manual tracing by our neuroanatomy
specialist) of the whole frontal lobe averaged 94.1% and 2.1%,
respectively, which demonstrated that our algorithm nicely
isolated the brain tissue from the nonbrain tissue. The average
TP and FP rate for the cortical gray matter (measured on
two orthogonal slices, one coronal and one axial, over the
entire range of the frontal lobe) in the frontal lobe were
86.7% and 20.8%. As we see in Fig. 10, the expert tracing
tended to be more aggressive in defining the gray-/white-
matter boundary, which resulted in the relatively larger value
of the FP rate. Note that the FP rate on gray/white segmenta-
tion is a very sensitive measure, especially considering the
fact that manually drawing a boundary between gray and
white matter to some extent depends on subjective individual
judgment. However, in quantifying the difference between
populations, despite the FP rates, the volume measurements
would still yield useful information as long as they are
consistent.

The volume of the constituent parts of the brain is typically
the measurement of interest for comparison among different
subjects in studies of neuroanatomy. Thus, as a second way to
analyze the utility of our algorithm, we compute reliability
statistics on the volume measurements using the methods
described in [31] (see also [42]). There was strong agreement
between the algorithm and the expert on the volume of the
frontal lobe (Pearson intraclass correlation coeffi-
cient [ICC] .901). The algorithm systematically estimated
the frontal lobe volume to be less than the expert tracer (mean
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Fig. 11. The outer and inner cortical surfaces of a frontal lobe colored with
the specified spectrum representing shape indexsi:

difference 4%) and this accounts for the lower ICC than
the Pearson coefficient. Similarly, for gray-matter volume of
the frontal lobe there was also good agreement (Pearson
.96). Thus, for both whole frontal lobe volume and frontal
gray-matter volume, the coupled-surfaces algorithm produced
measurements that were very similar to expert tracings.

Fig. 11 shows the outer and inner cortical surfaces of a
frontal lobe colored with their shape indexes. As we can see,
most parts of the gyri are automatically identified as ridge,
while most parts of the sulci are identified as rut, which
coincides with our knowledge of the cortical structure.

D. Regional Cortical Thickness

We further applied our algorithm to seven high-resolution
MRI data sets (SPGR, 2NEX, 1.2 1.2 1.2 mm voxels)
of normal males (average IQ 109) to study the pattern of
regional cortical thickness.

The lobes of the brain were labeled using locally developed
software [29] in conjunction with the ANALYZE software
package [30]. The frontal lobe was segmented by tracing the
central sulci directly on 3-D renderings of the brain and then
in successive 2-D slices extending the traces to the depth of
the sulci and through the white matter to the midline at an
angle perpendicular to the interhemispheric fissure. Next, the
temporal lobes were segmented by tracing the sylvian fissure
on 3-D renderings until the point where the fissure arched
upward into the parietal lobe. At that point of inflection,
a plane parallel to the AC-PC was used to segment the
temporal and parietal lobes. The occipital-parietal boundary
was set at midline by placing an oblique plane through the
parietoccipital sulcus and a coronal plane at the intersection
of the parietoccipital sulcus and the calcarine fissure. Fig. 12
(top) shows the parcellation of the lobes of a cerebrum, as
described above.

Shown in Fig. 12 (bottom) are the top and back views
of an outer cortical surface colored with cortical thickness.
Table III lists the cortical thickness measurements in four lobes
over the seven subjects. We compared the mean thickness
of each lobe to the data on 63 males from the postmortem
study by Pakkenberg and Gundersen [27], and found the
exact same rank ordering of thickness; the frontal cortex was
the thickest and the occipital the thinnest. The postmortem
data measurements were 5–14% thinner by lobe than ourin

Fig. 12. Regional cortical thickness. (Top) Parcellation of lobes where
regional cortical thickness is measured. (Bottom) Top and back views of an
outer cortical surface colored with cortical thickness.

TABLE III
REGIONAL CORTICAL THICKNESS (IN mm) OF SEVEN NORMAL MALE SUBJECTS

vivo data. This might be due to both the older age of the
subjects, tissue shrinkage in the postmortem study, and volume
averaging with our MRI data. However, it is important to note
that the variability of thickness was the same for both samples
(about 0.15 mm). This gradient of thickness from front to back
in the brain is well known and due to the greater number of
large pyramidal neurons in the anterior as compared to the
posterior cortices.

A repeated measures analysis of variance (ANOVA) tested
whether cortical thickness differed by lobe, and found sig-
nificant differences between the four lobes (F[3, 27]56.3,

Post hoc paired tests showed that the frontal
lobe and temporal lobes were each significantly thicker than
either the parietal and occipital lobe (’s ), but they did
not differ in thickness from one another. Likewise, parietal
and occipital lobe thickness were not significantly different.

E. User Interaction and Speed Issue

In addition to robustness and accuracy, minimum user
interaction and computational efficiency have always been two
important issues in the problem of segmenting and measuring
the cortex. For an expert to manually isolate the nonbrain
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Fig. 13. Coupled-surfaces propagation on the same brain image as in Fig. 7,
but with a different set of initializing spheres. For the two final results from
different initialization, the TP rate of one with respect to the other is over
99.5%, and the FP rate is less than 0.5%, which demonstrates our algorithm’s
robustness to initialization.

tissue (using a combination of image thresholding, region
growing, and fine editing with manual tracing slice by slice
to carefully remove any nonbrain voxels, such as the CSF,
within sulci and the dura) alone can take about 2 h. (Structures
such as the dura and the CSF in sulci can only be removed
by careful slice-by-slice inspection. Therefore, considering the
thoroughness and obsessiveness of the fine editing, we believe
2 h is a fair estimate of the processing time). The manual
tracing of cortical gray matter is even more time consuming.
MacDonaldet al. deformed two ellipsoids with intersurface
constraints to approximate the inner and the outer cortical
surfaces. Their processing time for such segmentation on each
subject was reported to be 100 h on an SGI Origin 200 R10000
processor running at 180 MHz [22]. In [5], it was reported that
the ribbon algorithm was a fairly computationally demanding
iterative procedure, while manual placement of the initial
cortical surface and a multiscale formulation could decrease
the computational load. The processing time per subject for
Xu’s method was reported to vary between 4.5 to 6.5 h on an
SGI O2 workstation with a 174-MHz R10000 processor [41].

The initialization for our algorithm only requires the user
to specify several pairs of concentric spheres in the unedited
images, which can be done with several mouse clicks within
seconds. It should be emphasized that neither the number
nor the placement of the spheres (within a broad range of
acceptable values) affects the accuracy or the reproducibility
of the final result. To illustrate this, Fig. 13 shows the coupled-
surfaces propagation on the same brain, as in Fig. 7, but from

a different set of initializing spheres. The final results of the
surfaces show little visual difference. Quantitatively, the TP
rate of one with respect to the other is over 99.5% and the FP
rate is less than 0.5%.

For a 3-D image (1.2 1.2 1.2 mm in voxel size) of
the whole brain, our algorithm runs in about 1 h on a SGI
Indigo2 machine with a 195-MHz R10000 processor. Skull-
stripping, segmentation and measurement of the cortex are
done simultaneously. Comparatively, to our knowledge our
algorithm outperforms other related techniques with respect to
user interaction and computational efficiency.

IV. SUMMARY AND FUTURE DIRECTIONS

In this paper, we presented a new approach to the seg-
mentation and measurement of cortical structure which is of
great interest in the study of the structural and functional
characteristics of the brain. Motivated by the fact that the
cortex has a nearly constant thickness, we model the cortex
as a volumetric layer which is completely defined by the two
bounding surfaces and the homogeneity in between. Starting
from easily initialized concentric spheres and driven by image-
derived information, two interfaces evolve out to capture the
inner and outer cortical boundaries, thereby segmenting out the
cortical gray matter from the white matter, as well as isolating
the brain tissue from the nonbrain tissue. Cortical gray-matter
volume and cortical surface area (both inner and outer) are
then measured. Due to the coupled level set implementation,
the cortical surface curvature and cortical thickness map
are also easily obtained. As seen from various experiments,
our algorithm is automatic, accurate, robust, and relatively
computationally efficient.

We would like to mention that this segmentation method
using coupled-surfaces propagation has potential applications
in other medical image analysis domains, where a volumetric
layer is the study of interest. Examples include the left ventric-
ular (LV) myocardium of the heart and the bounding wall of
the liver. Different coupling may be used to tailor the algorithm
for specific applications. For example, the endocardial and
epicardial walls which bound the thick LV myocardium are
loosely coupled instead of tightly coupled, as are the cortical
surfaces.

Future directions for this work include the following: finer
design of the local feature operator to better model the volume
averaging effect; better capturing the homogeneity of the
volume; volume measurement on the subvoxel level; possible
use of a vector image data set; and testing on image data of
abnormal brains.
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